Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition
نویسندگان
چکیده
منابع مشابه
Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress.
Impairment of ribosomal biogenesis can activate the p53 protein independently of DNA damage. The ability of ribosomal proteins L5, L11, L23, L26, or S7 to bind Mdm2 and inhibit its ubiquitin ligase activity has been suggested as a critical step in p53 activation under these conditions. Here, we report that L5 and L11 are particularly important for this response. Whereas several other newly synt...
متن کاملInhibition of c-Myc activity by ribosomal protein L11.
The c-Myc oncoprotein promotes cell growth by enhancing ribosomal biogenesis through upregulation of RNA polymerases I-, II-, and III-dependent transcription. Overexpression of c-Myc and aberrant ribosomal biogenesis leads to deregulated cell growth and tumorigenesis. Hence, c-Myc activity and ribosomal biogenesis must be regulated in cells. Here, we show that ribosomal protein L11, a component...
متن کاملScission of the p53-MDM2 Loop by Ribosomal Proteins.
The oncoprotein MDM2 is both the transcriptional target and the predominant antagonist of the tumor suppressor p53. MDM2 inhibits the functions of p53 via a negative feedback loop that can be circumvented by several ribosomal proteins in response to nucleolar or ribosomal stress. Stress conditions in the nucleolus can be triggered by a variety of extracellular and intracellular insults that imp...
متن کاملFeedback regulation of c-Myc by ribosomal protein L11.
Several ribosomal proteins including L11 have been shown to activate p53 by inhibiting oncoprotein MDM2, leading to inhibition of cell cycle progression. Our recent study showed that L11 also inhibits oncoprotein c-Myc. Overexpression of L11 inhibits c-Myc-induced transcription and cell proliferation, while reduction of endogenous L11 increases these c-Myc activities. Interestingly, L11 is a tr...
متن کاملRecognition of ribosomal protein L11 by the protein trimethyltransferase PrmA.
Bacterial ribosomal protein L11 is post-translationally trimethylated at multiple residues by a single methyltransferase, PrmA. Here, we describe four structures of PrmA from the extreme thermophile Thermus thermophilus. Two apo-PrmA structures at 1.59 and 2.3 A resolution and a third with bound cofactor S-adenosyl-L-methionine at 1.75 A each exhibit distinct relative positions of the substrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Death & Differentiation
سال: 2014
ISSN: 1350-9047,1476-5403
DOI: 10.1038/cdd.2014.167